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The occurrence of new unstable modes of quasigeostrophic baroclinic oscillation of 
rotating stratified shear flow over a wavy bottom is examined. To obtain a tractable 
mathematical problem, the bottom topography is considered as a perturbation 
modifying the oscillations. It is found that combinations of a top-intensified and a 
bottom-intensified Eady mode, each stable without topography, can be destabilized 
by topography if certain resonant conditions are met. These are that (i) the two modes 
possess the same wavefrequency, and (ii) topography possesses a wavenumber c 
bridging the gap between the wavenumbers of the modes a, b, i.e. c = a-b .  Growth 
rate of this instability (called type A) is proportional to the amplitude of the 
topographic component. There are two special cases: (i) when one of the basic modes 
is a marginally neutral mode - according to  the classical analysis without 
topography - the instability is stronger (type M) with growth rate proportional to 
the $-power of topographic amplitude; (ii) when both modes are marginally neutral 
the instability is even stronger (type M2) with growth rate proportional to the square 
root of topographic amplitude. 

These topographic instabilities, like classical baroclinic instability, draw their 
energy from the available potential by transporting buoyancy down the mean 
gradient associated with the geostrophic shear flow. 

1. Introduction 
Baroclinic instability - discovered first by Charney ( 1947) and independently by 

Eady (1949) - is a potent mechanism for spontaneously generating velocity and 
density oscillations in a rotating stratified fluid by drawing on mean potential energy 
available from the mass distribution associated with a vertically sheared mean 
geostrophic flow. It is invoked in meteorology and physical oceanography alike to 
explain, for example, the occurrence of synoptic disturbances in the midlatitude 
Westerlies and the meanders or eddies of ocean currents like the Gulf Stream or the 
Antarctic Circumpolar Current. Because of the obvious practical importance of the 
phenomenon, a considerable literature (for reviews see Hide & Mason 1975; Pedlosky 
1979) has been built up by authors using both analytic and numerical methods to 
study the linearized stability of a multitude of specific basic flows, to establish general 
conditions for stability, to extend the treatment to encompass nonlinear effects, and 
so on. 

In this paper, I wish to focus attention on the effects of quasiperiodic (‘wavy’) 
topography on the simple baroclinic flow studied by Eady (1949) : i.e. linear density 
stratification, and linear velocity profile balanced geostrophically by the slope of 
isopycnals, as in figure 1 .  Aspects of the topography question have been addressed 
before. Blumsack & Gierasch (1972) considered the effect of uniform cross-stream 
slope on baroclinic instability. De Szoeke (1975) considered the effects of general 
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weak-amplitude cross-stream topography. These studies were linearized analyses (as 
this paper is). The question of topography acquired added piquancy recently from 
the work of Charney & Straus (1980), who, in a layered nonlinear model of planetary 
flow over topography found multiple wavelike stationary equilibrium states, some 
strongly resembling the atmospheric situation of blocked flow. The ‘energy of these 
states comes from the potential energy of the mean flow, not from kinetic energy 
transfer via the mountain torque ’ (Charney & Straus 1980), suggesting strongly a 
baroclinic-instability-like mechanism of origin. The major result to be established in 
this paper is that  topography gives rise to new modes of instability which draw their 
energy from the available potential energy of the mean flow in the classical manner. 
These new unstable modes are constructed from the superposition, in a fixed ratio, 
of top-intensified and bottom-intensified modes of the same frequency, but differing 
wavenumbers that would be stable without topography. For instability, bottom 
topography must bridge the wavenumber gap between the modes. The heavily 
truncated spectral model of Charney & Straus (1980) cannot support enough 
wavenumber interactions to exhibit the kind of instability discussed in this paper, 
which therefore serves warning that a more elaborate spectral model than Charney 
& Straus’s may sustain a qualitatively richer set of instabilities and equilibria. 

This paper will be limited to consideration of quasigeostrophic baroclinic instability. 
The quasigeostrophic approximation, originally worked out by Charney (1947), 
assumes that the primary momentum balance of the fluctuations is geostrophic, and 
thereby greatly simplifies the vorticity balance, though not trivially, because i t  is 
derived by consistently retaining certain ageostrophic terms. For an excellent modern 
derivation see Pedlosky (1979). 

There are certain restrictions on the kinds of topography that we can consider. 
First, as is well-known (Pedlosky 1979), topographic slope cannot exceed the Rossby 
number of the flow. Were this not so, the quasigeostrophic approximation would be 
violated because horizontal velocities impinging on such strong slopes would cause 
vortex stretching too intense to be balanced by increasing quasigeostrophic relative 
vorticity. Stated another way, treatment of strong topographic slopes requires 
abandonment of the quasigeostrophic approximation. 

Beyond this, to obtain an analytically tractable mathematical problem we expand 
solutions in power series of E t ,  a parameter typifying topographic slope after scaling 
by Rossby number. I n  this paper, we typically obtain and discuss only the first O(e) t  
corrections to the solutions for no topography, though the method of calculation for 
higher-order corrections will be obvious. I n  any case, uniform convergence for a finite 
range of E can be proved in this type of problem (McIntyre 1970). Hence the first-order 
solutions we derive here are tentatively offered as initial thrusts at the problem of 
the effects of finite topography (in the sense of order-Rossby-number slope) on 
quasigeostrophic baroclinic instability. 

Within these limits on amplitude, topography is represented by a sum over 
two-dimensional spatially periodic components. Though there does not seem to be 
any essential difficulty in the extension of these methods to cover nonperiodic 
topographies representable by continuous spatial Fourier integrals, I prefer, in order 
to fix ideas, to present the analysis for discrete sums representing periodic or 
quasiperiodic (‘wavy ’) topography. 

t Occasionally, expansions in fractional powers of E are necessary. 
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FIGURE 1. Schematic of basic mean flow. 

2. Mathematical analysis 
The specific mean flow and density field whose stability in the presence of 

topography is considered in this paper is the same as studied by Eady (1949) (figure 
1 ), namely 

where fuo = ga (geostrophic balance), 
HO 

gy = N2 = constant; 

that  is, linear density stratification, and linear shear balanced geostrophically by a 
linear slope of isopycnals. The mean flow at the average bottom depth z = - H ,  is 
taken to be zero, so that the mean flow by itself is unaffected by the wavy bottom. 
The horizontal extent of the region occupied by the flow is unbounded in both 
directions. The dynamical equations and boundary conditionsgoverning perturbations 
are linearized about this basic mean flow. Because their derivation is familiar, they 
are merely stated here. 

2.1. Equations of motion 
Disturbances of the steady motion of a rotating stratified inviscid fluid, such as 
atmosphere or ocean, are governed by the potential-vorticity balance, which, subject 
to  the quasigeostrophic and Boussinesq approximations, can be written (Pedlosky 
1979) 

where the symbols have the following meanings: 

(a t  + U ( z )  ax) 1% + + a& N-' a,] $ + Qy $x = 0, (2) 

x, y, z 
t time, 
f = f o  +By 

dY 

eastward, northward, vertical coordinates, 

Coriolis parameter, 
p = - df planetary vorticity gradient, 

N ( z )  = -- -' 
U ( z )  basic horizontal shear flow, 
Qy = p- (fi N-2ilz)z 
$ disturbance 'stream function ', 
u, v ,  w 
p = fo$ disturbance pressure, 
po reference density, 
p(y, z )  mean density, 
p disturbance density, 

BrunGVaisala frequency, 
( P o  az)' 

basic potential-vorticity gradient, 

components of disturbance velocity, 

b = -  -" disturbance buoyancy. 
Po 
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It is a consequence of geostrophy and hydrostasy that 

while vertical velocity can be determined from the motion of isopycnals, i.e. 

The condition of vanishing vertical velocity a t  the top boundary can be written 

(2 ,+U(z )a , )$z -uz$x  = 0 (2 = 0).  ( 5 )  

foN-2[(a,+U(z)a,)$,-U,$,1 = hx$y-hg$x  = J ( h , $ )  ( z = - H o + h ) .  (6) 

For the Eady model (figure l) ,  i~ and p are given by (l),  N is constant, and p is 
neglected; hence Qy = 0. Scaling the vertical coordinate (and depth variation) by H,, 
horizontal coordinates by the baroclinic Rossby radius of deformation A = NHo/fo,  
time by NHo/fouo,  the depth variation h by 6Ho, the non-dimensional differential 

(7) 
equation becomes 

while the boundary conditions become 

(~,+a,)$,-$x = 0 (2 = 01, (8) 

(9) 

The condition of no normal flow a t  the bottom boundary x = - H ,  + h(z ,  y) is 

v2+ = (a;+a;+a;) $ = 0, 

(a, + (1  + z )  2,) $, - $, = J(h ,  $) ( z  = - 1 + ah). 

To make the coefficient on the right of (9) unity, we had to choose S = uo/NHo. 
For typical oceanic parameters, N = lop3 s-l, H,, = 5 km, u, = 50 cm s-1, we obtain 
6 = 0.1. Accordingly, consideration should be formally limited to topographic 
variations 5 0(10%) of Ha, for consistency with this scaling. Note that 6 = uo/foA, 
which is a Rossby number based on A. I ts  smallness is consistent with the 
quasigeostrophic assumptions that underpin (2) (Pedlosky 1979). 

The method of solution will be to characterize variations in scaled topography by 
a small parameter t.,t 
so that (9) becomes 

h = eh,, (10) 

(9’) (a, + ~ ( s s )  a,) $ z -  $, = 4 h , ,  $1 ( 2  = - 1 + o(4) .  
We may consistently neglect O(e8) terms in preference to the O(e)  term - this entails 
imposing the bottom condition (9’) a t  the mean level z = - 1 .  The crucial disappearance 
of the mean advective term in (9’) depends on the vanishing of the mean flow at  the 
bottom, U( - 1) = 0. 

2.2 .  Power-series expansion in topography parameter 

Exploiting the smallness of topography (e 5 1) amounts to perturbing the Eady 
problem. This parallels quite closely Mclntyre’s (1970) treatment of perturbations 
of the Eady problem by vertical and horizontal variations in the velocity profile of 
figure 1, and de Szoeke’s (1975) treatment of weak cross-stream topography. We seek 
a solution as a power expansion in e : 

II. = $ o + € ~ , + € 2 $ 2 +  ... . (11) 

t Hence the dimensional scale of topography variation is ESH,. We shall anticipate that the 
perturbation formalism to be developed below is valid within a finite radius of convergence, E < eo, 
where E,, = O(1).  (See McIntyre (1970) for methods of estimating E , . )  



Baroclinic instability over wavy topography 283 

It is apparent that  the equations are separable in time, so + and its successive 
approximations +,, ?,kl, . . . can be supposed to behave like e-iwt in time. Hence a, in 
(S), (9') can be replaced by -iw. These equations then pose an eigenvalue problem 
for w .  The allowable eigenvalues will depend in general on 6, i.e. 

w = w , + s w , +  .... (12) 

2.3. Lowest-order solution 

Substituting (lo)-( 12) into (7)-(9'), we obtain for the lowest-order approximation 

vz$, = (a:+a;+a:) +, = 0, (13) 

B , $ o = + o , - ( - i w , + ~ , ) - l $ o , = O  ( z = O ) ,  (14) 
= ~o,-(-iwo)-l+ox = 0 ( z  = - 1 ) .  (15) 

The operators B,, B-, are written in this way so that the problem is self-adjoint, a 
useful property which will be exploited later. 

Equations (13)-( 15) state the familiar quasigeostrophic Eady (1949) problem, 
whose solution is well-known (see e.g. McIntyre 1970) : 

x i ( z )  = kc, coshk(z+ 1)-sinhk(z+ l ) ,  (18) 

(19) 
w0 - = Go( k) = 4 & 4[ 1 + 4k-' - 4k-1 coth k]4. 
k, 

The dispersion relation represented by (19) is most familiarly displayed in figure 2. 
Clearly seen are an  unstable region for k < k ,  = 2.40 - in which complex-conjugate 
pairs of values of w, = kzco are possible - and a stable region for k > k,. I n  the latter, 
two neutral stable modes are possible, one of which - the top mode - is evanescent 
from the upper boundary in the limit of large wavenumber k, while the ather - the 
bottom mode - is evanescent from the lower boundary. This evanescence is obscured 
for wavenumbers nearer k,, though we shall retain the nomenclature, top mode or 
bottom mode, to  distinguish them. 

The dispersion relation (19) can also be thought of as specifying families of different 
vector wavenumbers k that  give the same stable wave frequency w, - a representation 
which will become useful shortly. These constant-frequency families are shown as 
curves on the k-plane of figure 3. Each curve has two branches, one representing 
top modes (indicated by solid lines), the other representing bottom modes (dashed 
lines). The two branches join on the circle k = kM. Because c, = at k = k,, whatever 
the frequency, the branches join at k, = 2w,, for given w,. Because coth k - 1 + O(eW2") 
for large k, it can be shown from (19) that  

This means that k , - w O  for the branch corresponding to the top mode, while 
k,.k - wo for the bottom mode. The latter relation shows that the bottom-mode 
branch, for given wo,  heads to infinity along a line inclined a t  arcos wo to  the abscissa 
in figure 2. Clearly, this makes sense only for wo < 1. For 1 < wo < tk, = 1.20, the 
bottom-mode branch cannot approach infinity ; instead, it intersects the k, axis 

10 P L M  180 
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0 1 2 3 4 5 6 
k 

FIQURE 2. Dispersion relation wo/k, = c,(k) = c, +ic, for Eady instability. Note real and imaginary 
parts for k < k, = 2.40; stable top-intensified mode (solid) and table bottom-intensified mode 
(dashed) for k > k,. 

kx 

FIQURE 3. Stable modes of figure 2 replotted. Each curve represents the family of wavenumbers 
that give the same frequency wo. Solid (dashed) lines are top- (bottom-) intensified modes. 

perpendicularly a t  some finite value of k,. For wo > 3;kM there can be no bottom mode. 
Figure 3 displays only one quadrant of the k-plane, in which all of k,, k,, wo are 
positive. The ( k ,  > 0, k, < 0) quadrant is obtained by simply reflec'iing figure 3 in 
the k ,  axis; still wo > 0. The remaining quadrants, in which k,  < C are obtained by 
reflecting the first two in the k ,  axis, though frequency should be taken negative, 
w,, < 0, in these quadrants. The latter symmetry, that oo(k) = -wo( -k), permits the 
construction of real solutions from complex ones like (16) by addition of complex 
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conjugates. The former symmetry, that w,(k,, ky) = w,(lc,, -,$,), permits the con- 
struction, from simple progressive plane waves, of solutions sta,nding in the y- 
direction. 

The following identity can be derived from (18) and (19) and will be found useful 
(McIntyre 1970) : 

i [ ( z +  1 - c 0 ) - ~ ( ~ ~ ( z ) } ~ ] O 1  = k4(cO-g) [k2(1 -co)2- 11-1 = A. 

[1 +4k-’-4kP1 cothk]; < 1 -2k - l ,  

(21) 

(22) Since coth k > 1 

as long as the left-hand side of the inequality is real, i.e. k 2 k, = 2.40. Using this 
in (19), we see that 

(23) k-l < c,(k) < c,+(k) < 1 -k-l  (k 2 kM). 

Hence (1-co)2k2-1 > 0, C i P - 1  > 0, (24) 

where either c i  or co can be taken for c,. From this it follows that the denominator 
in (21), the definition of A,  is always positive. Hence A is positive or negative as c,  > 
or c,  < +, that is, for top modes or bottom modes respectively: 

sgn ( A )  = sgn ( ~ ~ - 2 ) .  (25) 

This important fact will be used later. 

2.4. The Jirst-order problem 

Next we show how to calculate wlr $1, which contain the first effects of topography. 
The equations for $1 are V2$, = 0, (26) 

B0$, = iwl(-iwo+a.J1$oz ( z  = 0), (27) 

B-l$l = i w l ( - i w o ) - l $ ~ z + ( - i w o ) - l ~ ( ~ ~ , $ o )  ( z = - l ) .  (28) 

The operators B,, B-l, V 2  are defined in (13)-( 15). 

cylinder of cross-section A extending from top to bottom boundaries, we obtain 
Multiplying (26) by $$ and integrating by parts with respect to x, y and z over a 

The integral in (32) as A +  co is formally divergent, but the limit of A-l j j A  (. . .)dxdy 
has a strict meaning. Using (27) and (28) to express B$, a t  z = 0, - 1 in terms of $,, 

10-2 
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given by (1 6)-( 19), we can rewrite ( 3 2 )  as 

where A is given by (21), while 
r r  

133) 

( 3 4 )  

For $o - exp [i(k.x-wt)] and sinusoidal h,, i t  is readily seen than uo = 0, so that 

0, = 0. (35) 

I n  this case a solution of (26)-(28)  for is easily found. If h, = h, cos(c*x), it is 
comprised of wavenumbers k k c. As i t  has little interest, we shall not trouble to write 
it down. Clearly this method can be extended to  any topography that can be 
represented by a Fourier sum or a Fourier integral over wavenumber components. 
Successive higher corrections $,, $3 etc. can be found in the obvious manner 
(McIntyre 1970). 

2.5. Wavenumber degeneracy ; type-A instability 

The above procedure needs to be modified when the ground state k0 is degenerate. 
By degeneracy we mean that there exist two downstream vector wavenumbers a,  b 
with the same zeroth-order frequency 

w o ( a )  = wo(b) ,  i.e. a,co(a) = b,c,(b). (36) 

Figure 3 illustrates that  there exist whole families of wavenumbers for which this may 
occur. The reason for only considering pairwise, or binary, degeneracies will become 
apparent. In this case the wavefunction can be written as a sum 

$0 = $t+Y$t> (37 )  

where y is an arbitrary constant, and $?, $t are given by (16)-( 19) with k = a,  b.  
Formally then, the equations for $, are identical with (26)-(28) ,  but since there are 
two independent ground states there are two orthogonality conditions like ( 2 9 ) ,  each 
leading in turn to a condition like ( 3 2 )  : 

where B,$-,,B-,$, are given by (27), ( 2 8 ) .  We notice that 

lj[@t*( - iw, + ( z  + 1)  aJ2 dx dy = jj[$t*( - iwo + ( z  + 1 ) aJ2 $tX)]!T1 dx dy 

= 0,  
because a =i= 6 ,  and (39) 

(40 ) 

similar to (34) and its sequel. Hence ( 3 8 )  can be written 

where A,, hb are given by expressions analogous to  (21) for h with a,  b replacing k ,  
and r r  
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From a similar expression for r b a ,  it can be shown that 'Tba = (Tzb. If h, contains a 
component h, cos (a  - b)  ' x  = $hA exp [;(a - b)  'XI + c.c., then 

f lab  = --kJ&' $ h A U C ,  bCb(ax b, -ay bx),  

0 1  = kQ1, 521 = Ifl,bIaxbx(4Aa&)-', (44) 

(43) 
using (16) and (18). Otherwise r a b  = 0. Hence (41a, b )  can be solved for w l ,  y :  

So topography can split the degeneracy in the ground state, determining shifted 
frequencies wo _+ eSZ, and corresponding linear combinations $; _+ r$t of the un- 
perturbed degenerate states. 

If w1 can be complex, the disturbance @ can grow like exp [Im(ew,t)]. This can only 
happen when 

that is, A, and A, must have opposite signs. Recalling the formula (21) for A ,  we see 
that this implies 

or, in terms of figure 3, that wavenumbers a ,  b correspond to top and bottom modes 
respectively. If a , b  are both top (or bottom) modes then w1 is purely real and 
instability is impossible. To avert a trivial result (Tab should be non-zero; that  is, 
topography should possess a Fourier component a t  the bridging wavenumber a - b. 
The growth rate Im(ew,) is proportional to  the amplitude of this topography 
component. If (44) is examined to determine the conditions for the largest growth 
rate, i t  is seen that w l ,  which can be thought of as depending on wo and the manifold 
of conceivable a ,  b ,  is unbounded. It becomes infinite when ha (or hb) vanishes, which 
happens according to (21) when c, (or cb) = $, that is, when a (or b)  = E M  = 2.40. This 
situation requires special consideration, which we take up in $3.  

The necessity for a top-intensified mode to interact with a bottom-intensified mode 
and topography to produce instability follows from the requirement (46). Physically, 
the h-factors in this condition are linked to the meridional diffusion of potential 

(46) 

(47 1 

< 0, 

ca = co(a) > i, cb = co(b) < 4, 

vorticity by 
- 

(Bretherton 1966; Pedlosky 1979). Hence the condition (46) requires that the 
meridional potential-vorticity fluxes of the participating modes be in opposite senses. 
This can only be accomplished by the combination of a top mode (northward Aux) 
and a bottom mode (southward flux). These fluxes, though offsetting, __ do not balance 
precisely. There is a third contribution to potential-vorticity flux vl_, h due to the 
bottom topography itself. All three contributions must sum t o  zero to satisfy 
Bretherton's (1966) theorem of no net meridional potential-vorticity flux. 

The members of it given constant-frequency family of wavenumbers need only be 
considered in pairs. This is because at lowest order only SL binary degeneracy can be 
countenanced by a wave-topography-wave interaction. 

We call these instabilities type A, of which we immediately distinguish two 
subtypes, A, and A,. Type A, occurs in the situation where a,  b belong to  the same 
quadrant of the wavenumber plane; type A, occurs when one of a, b belongs to one 
quadrant and the other to the quadrant reflecting the first in the kx axis. Figure 4 
illustrates the two situations schematically for wo > 0. 
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I 

I 

FIGURE 4. Schematic illustrating resonance conditions for type-A topographic instability. a, b are 
top- and bottom-mode wavenumbers of the 3ame frequency; c is the topographic wavenumber, 
necessary to trip an instability. Subscripts 1, 2 denote examples of type-A, or type-A, instabilities. 

For a given frequency wa, there is a two-dimensional manifold of topographic 
wavenumbers c that can satisfy the resonance condition (36). Taking the degrees of 
freedom together, there is a three-dimensional manifold of type-A instabilities. 

2.6. The Jirst-order wavefunction correction 
Having determined w1 and y ,  we now show how to calculate 
degenerate situation. Substitution of (37), (16) and (18) into the right of (27) gives 

from (26)-(28) in the 

B,$, = z ( l -  cJ2 (ac, cosh a- sinh a )  ei(a'X-wt) 

(49) 
w1 -I- y - (1 -Cb)-' (bc, eosh b - sinh b )  ei(b'x-wt) 
bX 

a t  z = 0. The other boundary condition (28) is redundant, having been used in the 
determination of w1 and y .  A little algebra using the identity (21) shows that a 
particular integral of (26) and (49) is 

w 
(50) +lp = -.Lxtz(z) ei(a'x-wt) + w1 b i ( b . x - w t )  Y - X l C 4  e' 

a, bX 
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where 

with a similar expression for x! (z ) .  This contribution automatically balances in- 
homogeneous terms with wavenumbers a,  b on the right of (28), as is guaranteed by 
the solvability conditions (38a, b).  There are further terms contributing to $1, caused 
by other topographic components interacting with $,. These terms have horizontal 
wavenumbers other than a,  b. Their calculation is quite straightforward given a full 
specification of h,, but their effect is inconsequential for our purposes. Further, any 
arbitrary multiple of $, = $: + y$t can be added to $1, but this too is inconsequential 
and can be seen to cause merely a renormalization of $, by a factor 1 + O ( E )  (McIntyre 
1970). 

2.7. Topographic modifications of the classical baroclinic instability 

What happens to the classical baroclinic instabilities when they are modified by 
topography ? That is, what happens to the zeroth-order modes (16)-( 19) when wo and 
x f ( z )  are complex for k < k,? Though the perturbation treatment given above is 
correct only for real wo, the necessary modifications are slight. While the problem 
posed by (13)-(15) is self-adjoint for w, real, i t  is not so for wo complex. The 
consequence of this is that  while the adjoint solution of (13)-(15) is $$ (equation (16)) 
the adjoint solution when w, is complex is 

x y ( z )  = a(azci- 1 )  [az( l  -ca),- 13-' cosha(z+ l ) ,  (51) 

J ,  = Xf(Z)e-ik*x+iw*t 9 (52 ) 

which must be used instead of $: in (29) and its sequels above. The perturbation 
analysis of a monochromatic solution like (16) again gives w1 = 0 and an  undistin- 
guished form for +,. 

The case of wavenumber degeneracy (equation (36)) is again special. But now w, 
is complex, so the real and imaginary parts of both sides of (36) must be equal. 
Equality of real parts quickly implies, from (19), that a, = b,. The equality of 
imaginary parts demands that a = b, as can be verified graphically on figure 2. The 
only non-trivial solution of these two equations is ay  = -by, that  is, 

b is the reflection of a in the x-axis. 

Hence the only degeneracy possible when w, is complex is a kind of type-A, 
degeneracy. 

I n  case of such a degeneracy, the lowest-order solution must be thought of as a 
bimodal like (37). The coefficient y and wave-frequency correction w1 are determined 
by a procedure analogous to the above. The result is a set of equations just like 

(53 ) 

(41 a ,  b )  : 

((53) implies that  ha = hb = A,  by (21)). Given a topography component 

hA COS ( U - b ) * X  = hA C0S2ayy, 

these further suggest that  r a b  = = ihAa2Caay, (55) 

upon simplication of (43). Hence the solution of (54a, b)  is 
& hA a2az ay Ca 

2h 
y = f i ,  w1 = 

While w1 is in general complex, y is particularly simple. It means that the lowest-order 
wavefunction is 

(57) $, = $: + y$; = 2 e*fi" x g ( z )  cos ( a y y f & r )  eiazx-iwt. 
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Given cross-stream topography of wavenumber 2a,, any Eady instability with half 
that wavenumber is split into two modes standing in the y-direction with slightly 
different O ( E )  wave frequencies and growth rates, one shifted + 45' in phase from the 
topography, the other shifted -445'. 

Topography with downstream variation, so that no topography-wave-wave 
triplet c ,  a,  b (where b = a - c )  can fulfil (53), modifies the unstable Eady mode quite 
unremarkably . 

3. Degeneracies involving marginally neutral modes 
or close to 

it. This happens when a (or 6) approaches k ,  = 2.40, the marginally neutral 
wavenumber below which classical baroelinic instabilities occur in the absence of 
topography. In  this section an amended analysis is presented to cover these 
interesting cases, and stronger versions of type-A instability emerge with growth rates 
of order €5 or €4 according to  whether a = k ,  only, or whether both a = b = k,. 

If a = k,, then A, = 0 and (41 a, b )  have no solution. This situation is similar to 
those encountered by McIntyre (1970) and de Szoeke (1975), where perturbations 
around marginally neutral states were considered. The resolution of the difficulty lies 
partially in abandoning the power-series representation in E ,  ( l l ) ,  (12), of the 
perturbation solution. The first correction to the zeroth-order solution, it turns out, 
is larger than O(E) .  Instead of ( 1 1 )  and (12) we suppose that the solution of (7)-(9') 
can be written 

The analysis of $2 breaks down, or tends to, when either c, or cb is 

$ = @o+$' .  (58) 

w = w o + w ' ,  (59) 

$0 = $.o"+Y$L (60) 

wo(a)  = W O P ) ,  (61) 

where $', w' tend to zero as e+O, though not necessarily linearly, and 

as before, but a z k,, so that c, = wo(a) /a ,  % g. 
Substitution of (58) and (59) into (7)-(9') gives 

V % y  = 0, (62) 

Bo$' = iw'( -iwo $rp ( z  = 0 ) ,  (63) 

B-,$'= i w ' ( - i w o ) - l $ z + ( - i w o ) - l J ( h , $ )  ( z = - l ) .  (64) 
The obvious iterative solution for $' fails as a+k,, for the reasons noted. However, 
McIntyre (1970) observed that 

40' 

a, 
$f = - (az - 4)-l@& (65) 

is an exact particular integral of (62)-(64), balancing the inhomogeneous terms 
proportional to 0'$& in (63) and (64) when a = k ,  and c, = wo/a, = t exactly. 

(66) 
Accordingly we write 

when a % k,, including the y@F term for symmetry. Substituting (66) into (62)-(64), 
we obtain - after a little manipulation exploiting the properties of @$ and @!, namely 
that they satisfy (14) and (15) 

$ I  = $8 + y@.P + $'I 

VZ7y = 0, (67) 
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B,$" = -Bo(~f+yl/rP)+iw'(-iw,+~,)-1a,($ro"+y$,,b+$~+y1CI~) ( z  = 0), (68) 

BPI$'' = -B-,($f+ y$P)+iw'(-iw,)-l a,($$+ y$:+$f+ y$.P) 

+(-iw,)-'J(h,$$-ky$~) ( z = - l ) .  (69) 

Note the retention in these equations of contributions to @ from the approximate 
particular integrals $f,$p, which are of order w' 4 1. I n  the topographic term, 
however, only the lowest-order approximation to  $ is retained. Like the higher-order 
terms in $2, $" must satisfy conditions of orthogonality to  $:,$: that lead to 
compatibility equations just like (38a,  6 )  with $" replacing Substituting (68)  and 
(69)  into these, we encounter terms like 

JjM*(B$?)l% dxdy; (70)  

substitution from (65) for $f, use of the definitions (14) and (15) of the operators B, 
and B-,, and application of (19) and (21) shows that this term vanishes identically, 
as will a similar term involving $:, $?. The cross terms like I j  [$$*(B$f)]!!l dxdy also 
vanish, because they are spatial averages of fluctuating quantities like exp [;(a - b) .x] .  
Hence the first group of terms involving $f and $p in (68) and (69) make no 
contribution to the compatibility conditions. From the next group of terms we obtain 

iw'A-'jjA[$:*( -iiw,+(z+ 1)i3J1 $&]O1dxdy = 2h,w'/a,, (71) 

like the term in (41 a ) .  As before (equation (39 ) ) ,  the cross-terms vanish identically. 
The important new contributions to the compatibility equations are terms like 

i w ' k l  [ [[$$*( - iw, + ( z  + 1 ) dJ1 $f2]!LI dx dy 
J J  

4a4 1-a2c,(l-cc,) -- - 
a Z - 4  1 -a2(1 - c , ) ~  

from (65), (16)-(19) and ( 2 1 ) .  For a = k,, C, = i, p, = pill = 75.45. 
Finally, topography produces non-vanishing cross-terms like f?)w,b,, (42) ,  provided 

that i t  contains spectral components at wavenumber a - b. Hence the compatibility 

3.1 .  Degeneracy between a marginally neutral mode and an 
ordinary mode; type-M instability 

Suppose that a = k,, so that A, = 0, and neglect the second term in (73b);  then y 

The corresponding values of y are 
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The second term in (73 b )  is O(?),  the neglect of which in comparison to m& is thereby 
justified. The solutions ( 7 5 )  correspond to a neutral mode and a complex-conjugate 
pair of amplifying and decaying modes. 

If a is not exactly k ,  it  is easy to see that ha - (a -  k&, so that the neglect of 
the first term in ( 7 3 u )  is conditional on 

a -  k ,  5 o(&). ( 7 7 )  

I n  the range o(d) 5 a - k ,  5 1 .  ( 7 8 )  
The first term of ( 7 3 a )  supplants the second in importance as W' changes from O(&) 
to O ( E ) .  I n  the latter case the solutions of ( 7 3 )  reduce smoothly to +eCIl, given by 
(44). The instabilities arising from this analysis, with O(&) growth rates (equation 
( 7 5 ) ) ,  we shall call type-M disturbances, signifying their association with the marginal 
neutral point of the non-topographic stability analysis. 

Considering the one-dimensional manifold of topographic wavenumber components 
that can support this instability together with the range of frequency, there is a 
two-dimensional manifold of such instabilities, disregarding the small freedom of the 
'neutral' mode to  be within O(%) of strict neutrality. 

3.2.  Degeneracy between two marginally neutral modes ; type-Ma instability 

Can the second terms in both of ( 7 3 a ,  b )  be influential when a and b are both close 
to k ,  1 If a x b x k,, thenw,/a, x wo/bx x 8, so that a, x b,. Then either (i) a, x b, or 
(ii) ay x - b,. We consider these cases in turn. I n  either case 

where a = 16.06. 

ponent +hAexp [ i ( a - b ) . ~ ]  then (42) gives 

ha X "(a-k,): ,  hb % -a (b -kM)f ,  (79 )  

(i) Suppose a y  x by.  Then a x b. If topography contains a low-wavenumber com- 

gab = -iU,lihAUCabCb(U X bl 
x -@; hA k& la - bl sin 8, (80) 

where 8 is the angle between a - b and b (or a). Hence ( 7 3 a ,  b )  become approximately 

It is clear that there is a complex-conjugate pair of solutions 

W' = O(Ela-bli), y = O(1) (82 )  

for which the second terms of (81) are negligible. These solutions are merely the 
continuation of (44) and (45) into the region where a w b. 

(ii) On the other hand, let us consider ay = -by  and a = b = k,. (We take the exact 
equalities, so that ha = hb = 0 exactly. The approximate equalities are easily taken 
into account.) Then the necessary topography is oriented across the stream with 
wavenumber a - b  = 2a,9,  and ( 7 3 a ,  b )  become 
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FIGURE 5. Growth rate of type-M2 instability. 

Eliminating y ,  we obtain 

the solutions of which are 

. 
The corresponding values of y are 

whose magnitude is in any case 1 .  One of the solutions (85) gives unstable growth. 
The growth rate is O(&, the largest order of magnitude for any of the topographic 
instabilities we have discovered. We call this double neutral mode a type-M2 
instability. It can easily be checked from (73) and (79) that  (85) and (86) are good 
approximations as long as 

a-k, - b - k ,  5 o(d). (87) 

Since, for a = b = k,, c, = cb = 4, a, = b,  = 2w0, ay  = -6, = (kk-4034, the ex- 
pression (43) for f lab  can be simplified. We obtain 

g a b  = - ihA kk(+kk - W:);.  

w' = 2 i ( s l h ~ l ) t r u ~ l t k , o o ( ~ k ~ - w : ) ~  = ia. 

(88) 

(89) 

The growth rate a ( ~ ( h ~ l ) - i  is shown in figure 5 as a function of wo. It attains its largest 
value of 0.44k&& = 0.45 a t  wo = k,/64 = 0.98, corresponding to a, = b, = 1.96, 
ay = -by = 1.39, all in the non-dimensional units of the scaling of $2, As only 
frequency wo can be varied, there is a one-dimensional manifold of type-M2 
instabilities. 

The unstable member of (85) is then 
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4. Energetics; buoyancy flux 
Like classical baroclinic instabilities, the new topographic instabilities draw their 

energy from the available potential energy, i s . ,  from the eddy flux of buoyancy down 
the geostrophically balanced buoyancy gradient. The way in which the bimodal 
unstable disturbances are organized in order to  accomplish the necessary buoyancy 
flux is studied in this section. 

By integrating the identity 

v -wa,  +ad,) w.1 = $(a, + uax)  V2@ + (a, + u a x )  B(v@)z + u z a x ( @ @ z )  --%@x@z 

(90) 

(where u = z+ 1,  uz = 1 )  over a volume V formed by a cylinder of cross-section A 
extending from top to bottom boundary, and using (7)-(9’), one obtains 

Divide both sides by A .  Since we can write 

@J(h, @) = ax(h@@y) - q h @ @ x ) >  (92) 

the integrands on the left, as well as in the middle integral on the right, are composed 
of terms of the form ax( .  . .), a,(. . .). If @ and its derivatives are bounded, these integrals 
approach 0 as A --f CO. This leaves 

where the bars denote horizontal averages. This equation expresses the well-known 
integral energy balance principle for baroclinic disturbances : the kinetic plus 
potential energies of the fluctuations 

gEjGp = +(?+i?+P), (94) 

@X@Z = vb (95) 

in order to grow, must be fuelled by a ‘meridional’ eddy buoyancy flux 
_ _ -  

down the mean gradient by = -uz - = - 1 .  A more general form of (93) can be obtained 
by using (2) instead of (7 )  with quite general ~ ( y ,  z ) t  and N ( z )  (see Pedlosky 1979); 
in any case, the two-dimensional bottom topography h(z, y) entering through the 
bottom condition (9’) does not alter the simplicity of (93). 

It is instructive to examine how the topographic instabilities accomplish the 
necessary buoyancy flux. We shall examine in turn the three types of instability that 
we have distinguished. 

4.1. Classical baroclinic instability 
For comparison, we first calculate the well-known form of the buoyancy flux for the 
classical non-topographic baroclinie instability, which occurs for wavenumber 
magnitudes k < EM when w = kxco = w,+iwi is complex (equation (19)). The 

+ C.C., (96) 
wavefunction is @ = eik*x-iwt 

t Except that ~ ( y ,  - 1 )  = 0 is required. 
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where x/j(z) is given by (is), and C.C. denotes, here and in the following, the complex 
conjugate of all terms to its left. Hence 

It is a quite general consequence for the baroclinic instability of flows with 
vanishing internal potential vorticity gradient that  the associated buoyancy flux is 
independent of height (Pedlosky 1979). Hence (97) need only be evaluated a t  (say) 

(98) 
z = - 1 :  $, $, = 20, k2 e2wi t. 

The existence of a non-zero buoyancy flux is tied to the complexity of x / j ( z ) ;  for 
downgradient flux, the phase of the stream function must increase with height. 

- 

4.2. Type-A instability 
How does the type-A instability contrive to transport the buoyancy necessary for 
its growth 1 To calculate the buoyancy flux we need the stream function correct to 

from (11), (371, ( IS ) ,  (50 and (51). Note that, to O ( E ) ,  

w = W0+€W1,  (100) 
where wo is real (equation (19)), and w1 is imaginary (equation (44)). The contributions 
from each of the wavenumbers a, b in (99) to $x-#z are identical in form; that from 
wavenumber a is 

(101) 

Again, general considerations imply that this quantity is independent of z - a fact 
which direct calculation confirms. In  fact, (101) can be written 

2SlOll XtXL exp (2eIw1l t ) .  

2elw11 a2(azci-  1) [a2(1 - c , ) ~ -  11-l exp (24w11 t ) .  (102) 

As stated, there is a similar term, multiplied by lyI2, with b substituted for a. There 
is no O(1) counterpart to  (97), because xt,xg are real. The O ( E )  terms in (99) add 
complex structure a t  wavenumbers a and b to the wavefunction, and so induce an 
O(e) phase variation with height a t  each wavenumber, considered separately. 

4.3. Type-M instability 

We calculate the buoyancy flux by type-M instabilities for the case where a = k M  

exactly, though the formula we obtain is accurate as long as condition (77) is fulfilled. 
The wavefunction can be written 

correct to O ( E ) ,  where w' and y are given by (75) and (76) and are of order &,d 
respectively ; and 

X'(Z) = kMC, coshk(z+1)-SinhkM(Z+1) = ( tk&-I) - '  COShkM(Z+i), (104) 

as can be shown from (18) using (19) and (21). Hence 

~ . , + z  = 4i(w'*-w') (k&-4)-] {x~x&- (Xg)2}e2(oit+O(Q). (105) 
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This simplifies to $.,$., = 2wik&eZwit+O(c4), (106) 

using (104), and is again independent of z, as it  must be. Setting c, = cM = and 
a = k M  in (102) for type-A buoyancy flux, we see that i t  reduces to (106) - neglecting 
the w'y2 x ~t contribution from wavenumber b - though a different approximation for 
wi needs to be used (equation (75 ) )  as we pass from one type to  the other. Further, 
(106) is identical in form with the buoyancy flux for classical instability (98), though 
for the latter wi would be zero without topography! Remarkably, only wavenumber 
a - the perturbed 'neutral' mode - effects a contribution to  lowest-order buoyancy 
flux, though the other wavenumber b and the bridging topography are necessary for 
the resonant vortex-stretching mechanism by which the wavenumbers interact and 
catalyse the instability. 

4.4. Type-M2 instability 

We calculate the buoyancy flux for a = b = kM, a,  = b, = 20, exactly, though our 
result will be accurate as long as condition ( 8 7 )  is fulfilled. The wavefunction can be 
written 2w' + = { X ~ M ( Z ) + ~ ( ~ L - ~ ) - ~ X O M Z ( Z ) } ( ~ ~ " . X - ~ ~ ~  + yeibex-iwt} + C.C. (107) 

correct to O(c) (cf. (103)), where w' and y are given by (85) and (86). Note that Iyl = 1. 
Wavenumbers a and b each give a contribution to buoyancy flux analogous to  the 
dominant term of (106), so that the total flux is 

$,+., = 4wik~ezwit+0(e) ,  (108) 
where wi = Imo '  x €6. 

The comparison of (108) with (106) is interesting; the former is just double the 
latter. One may think of this as the wavenumber b contribution in (106)-there 
formally O(d)  - emerging from the higher-order gloom, so to speak, as b- ta  and 
reinforcing exactly the wavenumber a contribution. 

5. Summary and discussion 
This paper has treated the effects of topography on quasigeostrophic instability. 

For consistency with quasigeostrophy, only topography with slope bounded in order 
of magnitude by Rossby number times vertical-horizontal aspect ratio could be 
considered. Beyond this, the treatment proceeded by means of a perturbation in a 
parameter E typifying topography, after scaling by Rossby number and aspect ratio. 
Hence the first-order effects in c explicitly calculated above are formally valid 
approximations only for topography smaller even than Rossby number times aspect 
ratio. However, uniform convergence can be established for finite E for the perturbation 
formalism we have used (McIntyre 1970). Hence the first-order corrections obtained 
above, although they may need improvement by higher-order terms - which may be 
straightforwardly if laboriously calculated by the formalism we have developed - for 
quantitative accuracy, at least give qualitative indication of the effects of order-unity 
topography (after Rossby-number scaling). 

The qualitative effects of topography are quite remarkable. Any periodic component 
of topography with two-dimensional wavenumber c can destabilize a pair of top- and 
bottom-intensified waves - stable according to  the analysis without topography - 
with wavenumbers a,  b such that 

a - b  = c ,  
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and the same wave frequency 
w, = O b .  

These conditions suggest a situation like that of resonant triads, except that  here only 
two members of the triad are dynamic wave-modes, the third being a feature - having 
zero frequency - of the spatially inhomogeneous environment. The result of the 
resonance is not adiabatic exchange of energy among the triad, but the coupled 
growth of the two dynamic modes a t  the expense of the available potential energy 
tied up in the basic flow. For given C ,  there exists a subrange of frequency wo within 
0 < wo c i k M  = 1.20 a t  each of which a unique? pair of wavenumbers a[wo] ,  b[w,] 
exists satisfying the resonance condition. This may be confirmed by a perusal of 
figures 2 and 3. This general kind of topographic instability we called type-A 
instability. The growth rate of the instability is proportional, among other things, 
to the magnitude of the topographic component that catalyses it. 

There are certain special instances of this new instability. One, which we called the 
type-M instability, occurs when one of the dynamic modes is (exactly or nearly) the 
marginally neutral mode between classical non-topographic baroclinic instability, 
which occurs for wavenumber magnitudes below k ,  = 2.40, and the otherwise-stable 
range above k,. The other dynamic mode may be either a top-intensified or a 
bottom-intensified wave. The growth rate of this instability is proportional to the 

The second special case, called type-M2, occurs when both dynamic modes are 
marginally neutral by the non-topographic analysis. This can only happen for 
topography oriented cross-stream. When it does, the resulting instability grows a t  
a rate proportional to the square root of the topographic component. If topography 
is small ( E  4 l ) ,  these three types are ranked in order of increasing growth rates. 
(Classical baroclinic instability is still more potent, possessing growth rates of order 
unity.) In  contrast with their growth rates, these three classes of instability are 
progressively less populous : the type-A instabilities form a three-dimensional mani- 
fold, type-M a two-dimensional manifold, and type-M2 a one-dimensional manifold. 

Like the classical baroclinic instability without topography, the energy of growing 
disturbances comes from the available potential energy bound up in the mass field 
balancing the geostrophic mean current. That is, the kinetic plus potential energies 
of the disturbances are fed by the eddy flux of buoyancy down the mean gradient. 
Again like the classical instability, the two-mode hybrid topographic instabilities 
contrive to  transport buoyancy by arranging constant-phase surfaces of the stream 
function of each mode separately to slope upwards and upwind. For type-A 
instability this slope (from the vertical) is O(c) ,  and both modes contribute significantly 
to  the buoyancy flux. I n  type-M instability, the ‘neutral’ mode is perturbed to have 
O ( Q )  phase slope, and this mode dominatesin contributions to the eddy flux. I n  type-M2 
instability, both ‘neutral’ modes are perturbed to have O ( d )  phase slope, and 
contribute precisely equally to the buoyancy flux. 

Charney & Straus (1980) produced a heavily truncated spectral model of two-layer 
baroclinic flow over topography. The six spectral wavefunctions permitted in their 
model of a channel bounded meridionally at y = 0, n, and zonally periodic in x, were 

power of the amplitude of the catalysing component of topography. 

FA = cosy, 

F, = cos2y, 

FK = cos nx sin y, 

F, = cosnx sin2y, 

FL = sin nx sin y, 

FN = sinnx sin2y 

f Occasionally there will be two, one corresponding to type-A, instability, the other to type-A, 
(see figure 4). 
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(n  is an integer). Topography of a form similar to FK was supplied. A baroclinic zonal 
flow uA z - aFA/ay tends to be forced by a prescribed meridional heating distribution 
9: FA. It seems fair to identify this mode, though varying meridionally, with our zonal 
basic flow ti. The modes FK,FL do not represent different wavenumbers but are 
necessary to represent an arbitrary phase relationship of flow relative to F,-like 
topography. A similar thing might be said for the pair FM, FN, The mode F, can only 
be generated by the binary nonlinear interaction of the pairs FK, FN and FL, F,, as 
can be seen from a careful inspection of Charney & Straus’s equations. I n  a linearized 
analysis this mode would appear to have only secondary importance. This really only 
leaves the two wavenumber pairs, represented by FK, E;, on the one hand and FM, FN 
on the other, that  can exist as analogues of ‘free ’ modes in the linearized system. 
And topography has t,he same structure as one of these. Hence there is not sufficient 
wavenumber structure possible in the Charney-Straus system to permit the kind of 
mode-mode-topography triad interaction which has been the subject of this paper. 
(Though in fairness it must be pointed out that  Charney & Straus’s calculations are 
nonlinear with finite-amplitude topography and fluctuations, while our calculation 
is linearized with weak amplitudes.) 

Pedlosky (1 981) has abstracted the Charney-Straus mechanism in a linearized 
model which shows how the Charney-Straus quasistationary equilibria can be seen 
as an interaction among a stationary (zero-frequency) Rossby wave with eikx sin ly 
structure (cf. FK), topography of the same structure, and a correction to the zonal 
flow behaving like sin 21y (cf. Fc),  generated by self-interaction of the st,ationary 
Rossby wave. 

The instabilities that have formed the subject of this paper may therefore be 
expected to permit a much richer class of baroclinic motions interacting with 
topography than the model of Charney & Straus (1980) can allow. 

This work has been supported by grants from the National Science Foundation 
to the program of International Southern Ocean Studies. 
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